Myla's notebook

The Gyroscopic Motion

Quick Guide to Gyroscope Dynamics

A symmetric top (I1=I2I3) under gravity is described by


1. Full equations

ϕ¨=θ˙cosϕ(θ˙sinϕ+I3I1ω)mglI1cosϕθ¨=ϕ˙cosϕ(2θ˙sinϕI3I1ω)

2. Small‐tilt approximation (ϕ1)

Set sinϕϕ, cosϕ1. Then

θ˙=I3I1ωϕ+Ω0ϕ¨+κ2ϕ=Cwithκ2=Ω02+(I3I1ω)2,C=I3I1ωΩ0mglI1

Mean nutation angle:

ϕmean=Cκ2

3. Azimuthal drift per nutation

One period T=2π/κ gives

Δθ=0Tθ˙dt=2πmglI1I32ω2=2πϕmean

4. Steady precession

Constant tilt (ϕ˙=0, θ¨=0) requires

I1sinϕΩ2I3ωΩ+mgl=0

Solutions (“slow” and “fast” modes):

Ω=I3ω±(I3ω)24I1mglsinϕ2I1sinϕ

Exists if (I3ω)24I1mglsinϕ.
Slow root is the usual top precession; fast root is high‐energy.


#en #stem